skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Dan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Streamflow forecasting at a subseasonal time scale (10–30 days into the future) is important for various human activities. The ensemble streamflow prediction (ESP) is a widely applied technique for subseasonal streamflow forecasting. However, ESP’s reliance on the randomly resampled historical precipitation limits its predictive capability. Available dynamical subseasonal precipitation forecasts provide an alternative to the randomly resampled precipitation in ESP. Prior studies found the predictive performance of raw subseasonal precipitation forecast is limited in many regions such as the central south of the United States, which raises questions about its effectiveness in assisting streamflow forecasting. To further assess the hydrologic applicability of dynamical subseasonal precipitation forecasts, we test the subseasonal precipitation forecast from North America Multi-Model Ensemble Phase II (NMME-2) at four watersheds in the central south region of the United States. The subseasonal precipitation forecasts are postprocessed with bias correction and spatial disaggregation (BCSD) to correct bias and improve spatial resolution before replacing the randomly resampled precipitation in ESP for streamflow predictions. The performance of the resulting streamflow predictions is benchmarked with ESP. Evaluation is conducted using Kling–Gupta Efficiency (KGE), continuous ranked probability score (CRPS), probability of detection (POD), false alarm ratios (FARs), as well as reliability diagrams. Our results suggest that BCSD-corrected subseasonal precipitation forecasts lead to overall improved streamflow predictions due to added skills in winter and spring. Our results also suggest that BCSD-corrected subseasonal precipitation forecasts lead to improved predictions on the occurrence of high-percentile streamflow values above 75%. Overall, BCSD-corrected subseasonal precipitation has shown promising performance, highlighting its potential broader applications for river and flood forecasting. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Summary Global food production faces persistent threats from environmental challenges and pathogenic attacks, leading to significant yield losses. Conventional strategies to combat pathogens, such as fungicides and disease‐resistant breeding, are limited by environmental contamination and emergence of pathogen resistance. Herein, we engineered sunlight‐sensitive and biodegradable carbon dots (CDs) capable of generating reactive oxygen species (ROS), offering a novel and sustainable approach for plant protection. Our study demonstrates that CDs function as dual‐purpose materials: priming plant immune responses and serving as broad‐spectrum antifungal agents. Foliar application of CDs generated ROS under light, and the ROS could damage the plant cell wall and trigger cell wall‐mediated immunity. Immune activation enhanced plant resistance against pathogens without compromising photosynthetic efficiency or yield. Specifically, spray treatment with CDs at 240 mg/L (2 mL per plant) reduced the incidence of grey mould inN. benthamianaand tomato leaves by 44% and 12%, respectively, and late blight in tomato leaves by 31%. Moreover, CDs (480 mg/L, 1 mL) combined with continuous sunlight irradiation (simulated by xenon lamp, 9.4 × 105lux) showed a broad‐spectrum antifungal activity. The inhibition ratios for mycelium growth were 66.5% forP. capsici, 8% forS. sclerotiorumand 100% forB. cinerea, respectively. Mechanistic studies revealed that CDs effectively inhibited mycelium growth by damaging hyphae and spore structures, thereby disrupting the propagation and vitality of pathogens. These findings suggest that CDs offer a promising, eco‐friendly strategy for sustainable crop protection, with potential for practical agricultural applications that maintain crop yields and minimize environmental impact. 
    more » « less
    Free, publicly-accessible full text available March 16, 2026
  3. Accurate long-term predictions are the foundations for many machine learning applications and decision-making processes. Traditional time series approaches for prediction often focus on either autoregressive modeling, which relies solely on past observations of the target “endogenous variables”, or forward modeling, which considers only current covariate drivers “exogenous variables”. However, effectively integrating past endogenous and past exogenous with current exogenous variables remains a significant challenge. In this paper, we propose ExoTST, a novel transformer-based framework that effectively incorporates current exogenous variables alongside past context for improved time series prediction. To integrate exogenous information efficiently, ExoTST leverages the strengths of attention mechanisms and introduces a novel cross-temporal modality fusion module. This module enables the model to jointly learn from both past and current exogenous series, treating them as distinct modalities. By considering these series separately, ExoTST provides robustness and flexibility in handling data uncertainties that arise from the inherent distribution shift between historical and current exogenous variables. Extensive experiments on real-world carbon flux datasets and time series benchmarks demonstrate ExoTST's superior performance compared to state-of-the-art baselines, with improvements of up to 10% in prediction accuracy. Moreover, ExoTST exhibits strong robustness against missing values and noise in exogenous drivers, maintaining consistent performance in real-world situations where these imperfections are common. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  4. Free, publicly-accessible full text available November 17, 2025
  5. This study evaluates the performance of multiple machine learning (ML) algorithms and electrical resistivity (ER) arrays for inversion with comparison to a conventional Gauss-Newton numerical inversion method. Four different ML models and four arrays were used for the estimation of only six variables for locating and characterizing hypothetical subsurface targets. The combination of dipole-dipole with Multilayer Perceptron Neural Network (MLP-NN) had the highest accuracy. Evaluation showed that both MLP-NN and Gauss-Newton methods performed well for estimating the matrix resistivity while target resistivity accuracy was lower, and MLP-NN produced sharper contrast at target boundaries for the field and hypothetical data. Both methods exhibited comparable target characterization performance, whereas MLP-NN had increased accuracy compared to Gauss-Newton in prediction of target width and height, which was attributed to numerical smoothing present in the Gauss-Newton approach. MLP-NN was also applied to a field dataset acquired at U.S. DOE Hanford site. 
    more » « less
  6. Abstract Satellite‐derived sun‐induced chlorophyll fluorescence (SIF) has been increasingly used for estimating gross primary production (GPP). However, the relationship between SIF and GPP has not been well defined, impeding the translation of satellite observed SIF to GPP. Previous studies have generally assumed a linear relationship between SIF and GPP at daily and longer time scales, but support for this assumption is lacking. Here, we used the GPP/SIF ratio to investigate seasonal variations in the relationship between SIF and GPP over the Northern Hemisphere (NH). Based on multiple SIF products and MODIS and FLUXCOM GPP data, we found strong seasonal hump‐shaped patterns for the GPP/SIF ratio over northern latitudes, with higher values in the summer than in the spring or autumn. This hump‐shaped GPP/SIF seasonal variation was confirmed by examining different SIF products and was evident for most vegetation types except evergreen broadleaf forests. The seasonal amplitude of the GPP/SIF ratio decreased from the boreal/arctic region to drylands and the tropics. For most of the NH, the lowest GPP/SIF values occurred in October or September, while the maximum GPP/SIF values were evident in June and July. The most pronounced seasonal amplitude of GPP/SIF occurred in intermediate temperature and precipitation ranges. GPP/SIF was positively related to temperature in the early and late parts of the growing season, but not during the peak growing months. These shifting relationships between temperature and GPP/SIF across different months appeared to play a key role in the seasonal dynamics of GPP/SIF. Several mechanisms may explain the patterns we observed, and future research encompassing a broad range of climate and vegetation settings is needed to improve our understanding of the spatial and temporal relationships between SIF and GPP. Nonetheless, the strong seasonal variation in GPP/SIF we identified highlights the importance of incorporating this behavior into SIF‐based GPP estimations. 
    more » « less